The visible part of the ear (Pinna) is as unique as a fingerprint unless you are an identical twin!

You can tell where sound is coming from to within an angle of 1 degree.

The folds of the Pinna help you identify whether sound is coming from above or below.

The average nightclub pumps up the volume to 110 decibels, loud enough to rock your body! Use ear plugs to protect your hearing without distorting the music!

The Hammer, Anvil and Stirrup are the smallest bones in your body. The bones in the middle ear can vibrate up to 7,000 times a second (2,000 Hz).

The bones in the middle ear can vibrate up to 7,000 times a second (2,000 Hz).

The average right ear pumps up the volume to 110 decibels, loud enough to rock your body! Use ear plugs to protect your hearing without distorting the music!

The middle part of the ear (旚omo) is called the eardrum, and it contains 30,000 nerves going directly to the brain.

The ear canal is shaped like a traffic cone, large at one end and small at the other. This helps direct sound onto the ear drum.

The cornu part of the Inner ear is 3.5 mm long and the same diameter as a 5 pence piece.

Deafness Research UK scientists are at the cutting edge of research into deafness, tinnitus and hearing-related problems. Together we can make deafness a thing of the past.

Deafness Research UK scientists are at the cutting edge of research into deafness, tinnitus and hearing-related problems. Together we can make deafness a thing of the past.

Deafness Research UK scientists are at the cutting edge of research into deafness, tinnitus and hearing-related problems. Together we can make deafness a thing of the past.

Deafness Research UK scientists are at the cutting edge of research into deafness, tinnitus and hearing-related problems. Together we can make deafness a thing of the past.

The left side of the brain contains the speech areas that will enable you to speak and write.

The signals from the ears are dealt with in three different parts of the brain. The brain stem, the mid brain and the auditory cortex.

Sounds above 85 decibels at work require you MUST wear ear protection. It's the law!
NOISE AND MP3 PLAYERS

The ear can usually cope with sounds of up to 80 dB without risk of damage; this is equivalent to a street with lots of trucks going by. At 85 dB the exposure time before risk of damage is 8 hours (or approximately a standard working day) so if you are in a work environment where the noise level is higher than this you need to be wearing hearing protection. At 100 dB the exposure time is only 15 minutes before possible damage. Personal music players generally have a maximum volume of 100 dB (depending on the model). Turn down the volume! Even a small reduction can help you protect your hearing! If you can hear the music through someone’s headphones then they are listening at too loud a volume. If someone two metres away has to shout for you to hear them, then the noise levels are way too high. After a night out, if your ears are ringing, this could indicate that damage may have occurred. In this case it is a good idea not to go anywhere that’s too noisy for a few days to give your ears time to recover.

With sensible precautions you can maintain your amazing hearing system for years to come!

ABOUT DEAFNESS RESEARCH UK

Deafness Research UK is the only national charity in the UK dedicated to finding cures for deafness and other conditions such as tinnitus.

There has never been a more exciting time for research. We are on the threshold of truly revolutionary developments in genetics, pharmacology, digital technology, and many other disciplines. This is happening across the UK, in world-class medical centers, academic institutions and businesses. Scientists are now predicting that, within the next five to ten years they will be able to slow the advancement of the most common form of deafness, age-related hearing loss, and that within twenty years they may be able to cure it with non-surgical methods.

Our scientists are also identifying genes that cause deafness and counselling the families affected; improving technology; and improving implants and other aids. Our research is having real-life results now.

If you are diagnosed with either a hearing loss or tinnitus, contact Deafness Research UK’s Advisory Service by calling our national freephone number: 0808 808 2222 or email us at: info@deafnessresearch.org.uk

To book the Bionic Ear Show please call Laura on 020 7679 8951 or email her at bionicearshow@deafnessresearch.org.uk

Deafness Research UK
330-332 Grays Inn Road
London, WC1X 8EE
www.deafnessresearch.org.uk
Tel: 020 7833 1733
Fax: 020 7278 0404
Text: 020 7915 1412
Registered charity number: 326915
Company limited by guarantee number: 1927658

NOISE LEVELS

Noise is measured in decibels (dB). Because hearing roughly covers the range of 0 to 140 dB, most dB levels would be outside of this range, giving rise to the idea of the “dB scale” being logarithmic and not linear. This idea is incorrect. The “dB scale” is logarithmic only because it is convenient to use. The zero point on the dB scale corresponds to the sound of a pin dropping, and 0 dB is the threshold of hearing for the human ear. However, the dB scale is linear, not logarithmic, for dB levels above 0 dB. dB levels are logarithmic only for very low dB levels (below about 50 dB).

The noise in a typical room is about 40 dB, and the noise of a hand drill is about 85 dB. The noise of a jet engine at takeoff is about 135 dB. The noise of a jet engine at takeoff is about 135 dB.

The noise in a typical room is about 40 dB, and the noise of a hand drill is about 85 dB. The noise of a jet engine at takeoff is about 135 dB.

The noise in a typical room is about 40 dB, and the noise of a hand drill is about 85 dB. The noise of a jet engine at takeoff is about 135 dB.

The noise in a typical room is about 40 dB, and the noise of a hand drill is about 85 dB. The noise of a jet engine at takeoff is about 135 dB.

The noise in a typical room is about 40 dB, and the noise of a hand drill is about 85 dB. The noise of a jet engine at takeoff is about 135 dB.

The noise in a typical room is about 40 dB, and the noise of a hand drill is about 85 dB. The noise of a jet engine at takeoff is about 135 dB.

The noise in a typical room is about 40 dB, and the noise of a hand drill is about 85 dB. The noise of a jet engine at takeoff is about 135 dB.

The noise in a typical room is about 40 dB, and the noise of a hand drill is about 85 dB. The noise of a jet engine at takeoff is about 135 dB.

The noise in a typical room is about 40 dB, and the noise of a hand drill is about 85 dB. The noise of a jet engine at takeoff is about 135 dB.

The noise in a typical room is about 40 dB, and the noise of a hand drill is about 85 dB. The noise of a jet engine at takeoff is about 135 dB.

The noise in a typical room is about 40 dB, and the noise of a hand drill is about 85 dB. The noise of a jet engine at takeoff is about 135 dB.

The noise in a typical room is about 40 dB, and the noise of a hand drill is about 85 dB. The noise of a jet engine at takeoff is about 135 dB.

The noise in a typical room is about 40 dB, and the noise of a hand drill is about 85 dB. The noise of a jet engine at takeoff is about 135 dB.

The noise in a typical room is about 40 dB, and the noise of a hand drill is about 85 dB. The noise of a jet engine at takeoff is about 135 dB.

The noise in a typical room is about 40 dB, and the noise of a hand drill is about 85 dB. The noise of a jet engine at takeoff is about 135 dB.

The noise in a typical room is about 40 dB, and the noise of a hand drill is about 85 dB. The noise of a jet engine at takeoff is about 135 dB.

The noise in a typical room is about 40 dB, and the noise of a hand drill is about 85 dB. The noise of a jet engine at takeoff is about 135 dB.

The noise in a typical room is about 40 dB, and the noise of a hand drill is about 85 dB. The noise of a jet engine at takeoff is about 135 dB.

The noise in a typical room is about 40 dB, and the noise of a hand drill is about 85 dB. The noise of a jet engine at takeoff is about 135 dB.

The noise in a typical room is about 40 dB, and the noise of a hand drill is about 85 dB. The noise of a jet engine at takeoff is about 135 dB.

The noise in a typical room is about 40 dB, and the noise of a hand drill is about 85 dB. The noise of a jet engine at takeoff is about 135 dB.

The noise in a typical room is about 40 dB, and the noise of a hand drill is about 85 dB. The noise of a jet engine at takeoff is about 135 dB.

The noise in a typical room is about 40 dB, and the noise of a hand drill is about 85 dB. The noise of a jet engine at takeoff is about 135 dB.

The noise in a typical room is about 40 dB, and the noise of a hand drill is about 85 dB. The noise of a jet engine at takeoff is about 135 dB.

The noise in a typical room is about 40 dB, and the noise of a hand drill is about 85 dB. The noise of a jet engine at takeoff is about 135 dB.

The noise in a typical room is about 40 dB, and the noise of a hand drill is about 85 dB. The noise of a jet engine at takeoff is about 135 dB.

The noise in a typical room is about 40 dB, and the noise of a hand drill is about 85 dB. The noise of a jet engine at takeoff is about 135 dB.

The noise in a typical room is about 40 dB, and the noise of a hand drill is about 85 dB. The noise of a jet engine at takeoff is about 135 dB.

The noise in a typical room is about 40 dB, and the noise of a hand drill is about 85 dB. The noise of a jet engine at takeoff is about 135 dB.

The noise in a typical room is about 40 dB, and the noise of a hand drill is about 85 dB. The noise of a jet engine at takeoff is about 135 dB.

The noise in a typical room is about 40 dB, and the noise of a hand drill is about 85 dB. The noise of a jet engine at takeoff is about 135 dB.

The noise in a typical room is about 40 dB, and the noise of a hand drill is about 85 dB. The noise of a jet engine at takeoff is about 135 dB.

The noise in a typical room is about 40 dB, and the noise of a hand drill is about 85 dB. The noise of a jet engine at takeoff is about 135 dB.

The noise in a typical room is about 40 dB, and the noise of a hand drill is about 85 dB. The noise of a jet engine at takeoff is about 135 dB.

The noise in a typical room is about 40 dB, and the noise of a hand drill is about 85 dB. The noise of a jet engine at takeoff is about 135 dB.

The noise in a typical room is about 40 dB, and the noise of a hand drill is about 85 dB. The noise of a jet engine at takeoff is about 135 dB.